MAYBE 22.046 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ BR

mainModule Main
  ((enumFrom :: Char  ->  [Char]) :: Char  ->  [Char])

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((enumFrom :: Char  ->  [Char]) :: Char  ->  [Char])

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
takeWhile p [] = []
takeWhile p (x : xs)
 | p x
 = x : takeWhile p xs
 | otherwise
 = []

is transformed to
takeWhile p [] = takeWhile3 p []
takeWhile p (x : xs) = takeWhile2 p (x : xs)

takeWhile1 p x xs True = x : takeWhile p xs
takeWhile1 p x xs False = takeWhile0 p x xs otherwise

takeWhile0 p x xs True = []

takeWhile2 p (x : xs) = takeWhile1 p x xs (p x)

takeWhile3 p [] = []
takeWhile3 vz wu = takeWhile2 vz wu



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ NumRed

mainModule Main
  ((enumFrom :: Char  ->  [Char]) :: Char  ->  [Char])

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
HASKELL
              ↳ Narrow
              ↳ Narrow

mainModule Main
  (enumFrom :: Char  ->  [Char])

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
QDP
                  ↳ Instantiation
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(wv26, wv27, ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(wv26, wv27, Zero, Succ(wv290), ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(wv26, wv27, Zero, Zero, ba) → new_map1(wv26, wv27, ba)
new_map(wv26, wv27, Succ(wv280), Succ(wv290), ba) → new_map(wv26, wv27, wv280, wv290, ba)
new_map0(wv5, wv6, bb) → new_map(wv5, wv6, Succ(wv6), Succ(wv5), bb)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv270)) → Succ(wv270)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Zero)
new_primPlusNat(Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_map0(wv5, wv6, bb) → new_map(wv5, wv6, Succ(wv6), Succ(wv5), bb) we obtained the following new rules:

new_map0(z0, Succ(y_0), z2) → new_map(z0, Succ(y_0), Succ(Succ(y_0)), Succ(z0), z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ Instantiation
QDP
                      ↳ ForwardInstantiation
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map0(z0, Succ(y_0), z2) → new_map(z0, Succ(y_0), Succ(Succ(y_0)), Succ(z0), z2)
new_map1(wv26, wv27, ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(wv26, wv27, Zero, Zero, ba) → new_map1(wv26, wv27, ba)
new_map(wv26, wv27, Zero, Succ(wv290), ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(wv26, wv27, Succ(wv280), Succ(wv290), ba) → new_map(wv26, wv27, wv280, wv290, ba)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv270)) → Succ(wv270)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Zero)
new_primPlusNat(Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map(wv26, wv27, Succ(wv280), Succ(wv290), ba) → new_map(wv26, wv27, wv280, wv290, ba) we obtained the following new rules:

new_map(x0, x1, Succ(Zero), Succ(Zero), x4) → new_map(x0, x1, Zero, Zero, x4)
new_map(x0, x1, Succ(Zero), Succ(Succ(y_2)), x4) → new_map(x0, x1, Zero, Succ(y_2), x4)
new_map(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3)), x4) → new_map(x0, x1, Succ(y_2), Succ(y_3), x4)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ Instantiation
                    ↳ QDP
                      ↳ ForwardInstantiation
QDP
                          ↳ ForwardInstantiation
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(wv26, wv27, ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map0(z0, Succ(y_0), z2) → new_map(z0, Succ(y_0), Succ(Succ(y_0)), Succ(z0), z2)
new_map(x0, x1, Succ(Zero), Succ(Zero), x4) → new_map(x0, x1, Zero, Zero, x4)
new_map(wv26, wv27, Zero, Succ(wv290), ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(wv26, wv27, Zero, Zero, ba) → new_map1(wv26, wv27, ba)
new_map(x0, x1, Succ(Zero), Succ(Succ(y_2)), x4) → new_map(x0, x1, Zero, Succ(y_2), x4)
new_map(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3)), x4) → new_map(x0, x1, Succ(y_2), Succ(y_3), x4)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv270)) → Succ(wv270)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Zero)
new_primPlusNat(Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_map0(z0, Succ(y_0), z2) → new_map(z0, Succ(y_0), Succ(Succ(y_0)), Succ(z0), z2) we obtained the following new rules:

new_map0(Succ(y_3), Succ(x1), x2) → new_map(Succ(y_3), Succ(x1), Succ(Succ(x1)), Succ(Succ(y_3)), x2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ Instantiation
                    ↳ QDP
                      ↳ ForwardInstantiation
                        ↳ QDP
                          ↳ ForwardInstantiation
QDP
                              ↳ MNOCProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(wv26, wv27, ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(wv26, wv27, Zero, Zero, ba) → new_map1(wv26, wv27, ba)
new_map(wv26, wv27, Zero, Succ(wv290), ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(x0, x1, Succ(Zero), Succ(Zero), x4) → new_map(x0, x1, Zero, Zero, x4)
new_map(x0, x1, Succ(Zero), Succ(Succ(y_2)), x4) → new_map(x0, x1, Zero, Succ(y_2), x4)
new_map0(Succ(y_3), Succ(x1), x2) → new_map(Succ(y_3), Succ(x1), Succ(Succ(x1)), Succ(Succ(y_3)), x2)
new_map(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3)), x4) → new_map(x0, x1, Succ(y_2), Succ(y_3), x4)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv270)) → Succ(wv270)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Zero)
new_primPlusNat(Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ Instantiation
                    ↳ QDP
                      ↳ ForwardInstantiation
                        ↳ QDP
                          ↳ ForwardInstantiation
                            ↳ QDP
                              ↳ MNOCProof
QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map1(wv26, wv27, ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(x0, x1, Succ(Zero), Succ(Zero), x4) → new_map(x0, x1, Zero, Zero, x4)
new_map(wv26, wv27, Zero, Succ(wv290), ba) → new_map0(wv26, Succ(new_primPlusNat(wv27)), ba)
new_map(wv26, wv27, Zero, Zero, ba) → new_map1(wv26, wv27, ba)
new_map(x0, x1, Succ(Zero), Succ(Succ(y_2)), x4) → new_map(x0, x1, Zero, Succ(y_2), x4)
new_map0(Succ(y_3), Succ(x1), x2) → new_map(Succ(y_3), Succ(x1), Succ(Succ(x1)), Succ(Succ(y_3)), x2)
new_map(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3)), x4) → new_map(x0, x1, Succ(y_2), Succ(y_3), x4)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv270)) → Succ(wv270)
new_primPlusNat(Zero) → Zero

Q is empty.
We have to consider all (P,Q,R)-chains.
Haskell To QDPs